If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16Y^2-8Y-24
We move all terms to the left:
-(16Y^2-8Y-24)=0
We get rid of parentheses
-16Y^2+8Y+24=0
a = -16; b = 8; c = +24;
Δ = b2-4ac
Δ = 82-4·(-16)·24
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-40}{2*-16}=\frac{-48}{-32} =1+1/2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+40}{2*-16}=\frac{32}{-32} =-1 $
| 8d+6=38 | | 7f+17=8f-13+12 | | 32=3x-8 | | m-37=16 | | 29=−32r+17 | | 8x–12=-4 | | 2a2-14a-21=0 | | 3f-12+5f+2=3f-5 | | B=30.00-0.10x | | 2.4r+5.3=7.7 | | 3x-45=-21 | | 20+12m=-20+14m | | 2y-3+y=24 | | y+-13=-15 | | 8x+5=2x-16 | | 2(4x-1)=2(3x+1) | | 1.2x-2.5x=0.6x-0.7x= | | 4•z=35 | | 23c/4+2,c=10 | | 20r+-4r=16 | | f+54=79 | | x2+14=158 | | 15=x/4+6 | | 2(4x+6)=12x+1-4x+11 | | 7x-3=5x+-5 | | 55-5x=4(7-x) | | 45=g-20 | | x3+15=2 | | 3(7c-5)=6c+6c+5-2 | | 9x+1-5+10x=180 | | 6x–12=36 | | 176x-16=16(11x-1) |